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Outline
• Overview of results and contributions by UMD HPM 

Effects Research Group to the MURI Program
– Results of experimental measurement and characterization of HPM 

effects at the device and circuit levels.
– Investigation of effects from complex HPM waveforms
– HPM effects in electronic networks and systems.

• Model of HPM effects in semiconductor circuits
– Complement to RCM analysis of complex structures
– Simple, scalable and based on physical device parameters
– Compatible with existing high-frequency circuit simulators
– Accurate predictor of susceptibility in existing and advanced 

circuits and systems



Effects Testing of Integrated Circuits

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5

Time (μsec)

Vo
lta

ge

Output Voltage

BB Input Voltage

Digitizing
Scope

Spectrum
Analyzer
(Existing)

20 dBRF Amplifier

          20 dB

Device Under
TestBias Tee

Programmable
Pulsed RF Source

Baseband
Input

Signals

RF Input
Signals

Digitizing
Scope

Baseband
Filter

Baseband
Output
Signals

RF Output
Signals

Control/Data Acquisition
Workstation

Instrument Control and Data Bus

High-speed CMOS Gate

•Onset of effects 0.25 < VRF < 1 V

•Depend on RF frequency, pulse width, 
modulation, logic state, bias voltage, bus 
impedances, surrounding circuitry….

•Typically pulse widths > 100 nsec are 
required

Upset Threshold vs. Frequency in High-speed 
CMOS
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RF voltage at the input of a typical CMOS

Expanded view showing 
actual RF cycles.
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Examples of Effects in Advanced CMOS
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Mapping RF effects in integrated circuits

High-speed CMOS Advanced Low-voltage CMOS
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Examples of ESD protection in integrated circuits

Electrostatic discharge protection devices are integrated into virtually 
all integrated circuits: discrete, logic, analog, RFIC, mixed signal
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Physical Layout of ESD Protection Device

Input Pad

Multi-finger 
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Electrical and Physical Characteristics
of ESD Devices

Typical range of voltages 
relevant for HPM effects

Input Pad

Ground (Vss)
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Simplified Schematic of a CMOS Circuit

Resonant circuits consisting of lumped and distributed 
parasitic elements

Lparasitic

ESD
Diode

RF Pulse ESD
Diode

Vcc

C Bypass

ESD
Diode

Transmit Gate

Bus Line
Zinput

Bus Line
Zoutput

RF Pulse

Receive Gate

Lparasitic

Lparasitic



Impedance at the input of high-speed CMOS logic circuit

1

10

100

1000

0 0.5 1 1.5 2

Frequency [GHz]

Im
pe

da
nc

e 
[O

hm
s]

Vbias= -0.70

Vbias= -0.60

Vbias= -0.50

Vbias= -0.40

Vbias= 0.0

Vbias= +2.0

•When driven at resonance, the diode current and the rectified 
voltage increase.



The ESD diodes down-convert the modulation 
frequencies off the microwave carrier
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Comparison of measured and simulated response using model 
parameters extracted from  small-signal measurements

High-speed CMOS Logic Advanced Low-voltage CMOS



This behavior has been observed and studied in a wide variety 
of circuits.
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Are these parasitic diodes good rectifiers at 
microwave frequencies (f > 300 MHz)?

DC I-V Curve
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• W. Crevier, “Rectification Equivalence: A method for characterizing semiconductor rectification,” Titan-Jaycor
internal report to DTRA, December, 1996.

•M. L Forcier, R. E. Richardson, “ Microwave rectification RFI response in field-effect transistors,” IEEE Trans. 
Electromag. Comp., vol. EMC-21, no. 4, Nov. 1979.

•D. J. Kenneally, G. O. Head, S. C. Anderson, “EMI noise susceptibility of ESD protect buffers in selected MOS 
devices,” Proc. IEEE Int. Conf. Electromag. Comp., Wakefield, MA, August, 1985, pp. 251-261.
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The “rectification” model does not a complete the 
picture
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High-Frequency Analysis of D-B Junctions

2

2

2

( , ) ( , ) ( , )

( 1)

1

d

p

qV
p kT

diff
p D

D
D

D

p x t p x t p x tD
t x

D nI qA e
L N

iY G j
v

τ

ωτ

∂Δ ∂ Δ Δ
= −

∂ ∂

= −

= = +

DC I-V Curve

-50

-25

0

25

50

-1.00 0.00 1.00 2.00

Diode Voltage (V)

D
io

de
 C

ur
re

nt
 ( μ

A
)

Time-dependent 

Diffusion Equation

Solution for “Abrupt”
Boundary Conditions

High-frequency Admittance

D-B 
Junction



High-Frequency Admittance of D-B Junctions 
(Is= 10-15 A, Vth= 0.025 V, τ = 5 nsec)
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Comparison of measured and calculated D-B sensitivity in 
advanced low-voltage CMOS (τ = 5 nsec)
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Comparison of the D-B junction sensitivity in micron-
scale logic
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Overview of studies of HPM upset in electronic systems 

View of the assembled LAN switch Chassis cover removed

Power 
Supply

Power 
Bus

EMI 
Gasket

•Systems consist of many circuits with internal resonances interconnected by 
transmission lines within complex cavities.

•What parts of the system are most likely to be upset once RF penetrates the 
enclosure?



Distribution of parasitic resonant frequencies and quality factors in a 
digital communications system
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Characteristics of electronic systems

LAN switch with coaxial RF ports PC with waveguide port

• Most electronic systems contain modular components that are packaged 
according to standardized form factors (4U, 19” bays, ATX, etc.)

•Does this present any universal conditions or likely avenues for HPM 
attack?

•The enclosures are clearly natural microwave resonators.



Results of S-parameter measurements in an operating LAN 
switch

• Port #1 is a dipole launching antenna and port #2 is connected to the main 
+12 VDC power bus on the motherboard
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• Strong resonances are observed across L-band (~1-2 GHz)



RF Surface Current Density for Various TEM Eigenmodes
on the Motherboard

f= 1.284 GHz f= 1.502 GHz

f= 1.654 GHzf= 1.591 GHz



Results from Upset Studies in a LAN Switch

•At upset, the RF caused the switching power supply to either completely 
shut down or output the incorrect voltage for times that were 100 – 1000 
times the RF pulse width.

•This forced the microcontroller to completely reboot the system.
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Schematic of a typical switching power supply 

Rectified RF voltage at 
the feedback pin fools 
the comparator into 
detecting an over-
voltage condition.  It 
then sends a shutdown 
signal to the power 
controller via an opto-
isolator

The power controller feedback is 
designed to shutdown the system (~ 
30 sec) even if the “fault” is 
momentary (microseconds). 
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Conclusions
• RF rectification by ESD protection diodes and parasitic resonances have 

been identified as major susceptibility issues.
• The RF characteristics of these devices can be accurately described 

using lumped-element circuit models with simple high-frequency diode 
parameters.

• Upset can be easily predicted in terms of the high-frequency transfer 
characteristics of the circuit and the RF voltage, frequency and
modulation at the circuit terminals.

• In systems, the problem requires an EM or RCM treatment.
• Power controllers with feedback have been identified as a major and 

universal problem.
• An informed basis for developing effects sources:

– L-band
– Wideband or chaotic modulation
– 10-100 MW Power levels
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Possible Solutions
• Low-voltage differential 

signaling between critical 
communications nodes

• New concepts for opto-
isolation, low-power 
diodes, single photon 
detectors, etc.

• Power supply redesign

• New ESD circuits and 
structures

LVDS 
Input 
Lines

Core 
Logic
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